

Cray Inc. Proprietary

NOT FOR PUBLIC DISCLOSURE Page 1

Cray Productivity Feature Evaluation
Automated Profiling Analysis

1 Automated Profiling Analysis
Automated Profiling Analysis, or APA, is a new feature of the Cray Performance Tools designed

to simplify the process of program instrumentation and data collection for purposes of

performance analysis.

APA works by first profiling the application for time usage. It uses the profile information

gathered to determine an appropriate data collection strategy specifically for that application.

APA specifies the strategy in the form of a template file that can be used as input into

subsequent performance analysis runs.

1.1 Feature Description
One of the first tasks that a developer tackles when analyzing an application is to determine

where the application is spending most of its time. To do this, a timing profile is generated. After

this information is available, the developer then wants to understand why time is being spent in

certain routines. Typically, the developer will set up a second experiment to collect further

information. The APA feature can be used to simplify this set of tasks.

To create a timing profile using the APA feature, the developer simply passes the ‘-apa’ option

to the instrumentation utility, pat_build. After the instrumented application executes, APA

automatically creates a customized template file for the application that can be used as input to

any future performance analyses required for gathering more information. This template file

includes a list of all the program’s functions, separating out those functions which took small

amounts of time so that they will not be included in the next performance analysis. The

template file also indicates the kinds of information to collect, such as specifying the hardware

counter group to use and listing libraries which should be traced. The user can use this template

directly, edit it to refine the next collection of data, or use it to create new experiments for that

application.

1.2 Availability for Evaluation
Support for this feature is in all versions of the Cray Performance Analysis Tools Versions 5.0 and

higher.

Cray Inc. Proprietary

NOT FOR PUBLIC DISCLOSURE Page 2

1.3 Benefits
Performance tools provide many options in order to allow the user to control the types of data

collected, the volume of data gathered and the best manner of display. The learning curve for

using these tools is steep and frequently a developer does not have much time to become

familiar with the tools.

APA provides a straightforward set of steps that a developer can follow in order to produce a

performance analysis report of an application which focuses on the important aspects of the

program, without generating unnecessarily large amounts of data. Following these steps does

not require that the developer have a high degree of familiarity with the tools.

In addition, APA creates a template file which can serve as input to a subsequent performance

analysis run. This template file can be easily modified to fine tune the data collection on future

runs. It is easier and less error-prone for the developer to modify an existing template file that

to create a new input from scratch.

1.4 Restrictions
Versions 5.0 and lower of Cray Performance Analysis tools must be used on programs that are

statically linked. Support for dynamic libraries will be included in Version 5.1.

Only non-static function entry points at global scope and written in C, C++ or Fortran can be

instrumented.

2 Setup and Usage
The following examples here illustrate how to setup your environment and use the APA feature.

Cray Inc. Proprietary

NOT FOR PUBLIC DISCLOSURE Page 3

2.1 Environment Setup
APA is included in the Cray Performance Tools Releases 5.0 and higher.

The following example illustrates how to check the availability and release level of CrayPat on a

Cray XT machine.

If the version reported is older than 5.0, contact your system administrator to update the

CrayPat package.

2.2 General Use
General usage of this feature is provided in section 2.4 of the manual Using Cray Performance

Analysis Tools, S-2376-50. This document can be found on the Cray documentation web site,

docs.cray.com.

The example below illustrates how APA can be used.

2.3 Using the Provided Example

2.3.1 Material Location

An electronic copy of the example will be provided along with this feature description. It can

also be requested via one of the contacts listed at the end of this document.

load the necessary modules

$ module load xt-craypat

Check the version using pat_build or pat_report

$ pat_build –V
CrayPat/X: Version 5.0 Revision 2786 08/31/09 12:18:23

Cray Inc. Proprietary

NOT FOR PUBLIC DISCLOSURE Page 4

2.3.2 Resource Requirement

There are no special resource requirements, other than access to an XT system which runs CNL

and is capable of executing your application.

2.3.3 Running the Example

The example used to demonstrate this feature is based on the SWIM Fortran program. The

following example code shows how to setup and generate an executable.

load the craypat module

$ module load xt-craypat

untar the example file

must be in a lustre filesystem

$ tar –xf apa_example.tar

change to the src directory

$ cd apa_example/src

choose makefile for the compilers at your site

$ module load PrgEnv-cray

$ ln –s makefile makefile.cray

or

$ module load PrgEnv-pgi

$ ln –s makefile makefile.pgi

create the swim executable

$ make

$ cp swim ../bin

Cray Inc. Proprietary

NOT FOR PUBLIC DISCLOSURE Page 5

The next set of steps guides you through using APA to instrument and examine the code. The

example includes a script file which contains a version of these commands that uses variables

for most of the program and file names. You can either type the commands in the example box

below or use the supplied script.

2.3.4 Using Your Own Application

Using the above example as a guide, try this on your own application. A good candidate code

will use C and/or Fortran and perform some combination of computation, communications and

I/O.

Two things to keep in mind are that you must execute on a Lustre (parallel I/O) filesystem and

that you need to save your object files and original executable file.

Start in the bin directory
cd apa_example/bin

Step 1. Instrument the original program
export PAT_RT_EXPFILE_NAME=swim
pat_build -O apa swim

Step 2. Run the instrumented code (may need to use batch)
aprun -n 4 swim+pat

Step 3. Use pat_report to process the data file
pat_report_filename=$PAT_RT_EXPFILE_NAME.xf
pat_report $pat_report_filename > pat_report.sampling.stdout
mv $PAT_RT_EXPFILE_NAME.ap2 $PAT_RT_EXPFILE_NAME.sampling.ap2

Step 4. Reinstrument the program
pat_apa_filename=$PAT_RT_EXPFILE_NAME.apa
pat_build -O $pat_apa_filename

Step 5. Run the reinstrumented program
export PAT_RT_EXPFILE_REPLACE=1
aprun -n 4 swim+apa

Step 6. Pat_report
pat_report $pat_report_filename > pat_report.apa.stdout

Cray Inc. Proprietary

NOT FOR PUBLIC DISCLOSURE Page 6

3 Feedback Requested
We would like to request your feedback as part of this assessment.

3.1 Experience Running Your Own Application
 Please describe any difficulty working with your own application that was different

from the example

 Please describe what worked well and what didn’t work

 In your judgment, will this feature save you time or effort?

 How would you characterize the savings (fewer iterations, less data to examine, etc)?

 What would you estimate for the savings time?

4 Contact information

Don Mason

dmm@cray.com

Margaret Cahir

n13671@cray.com

mailto:dmm@cray.com
mailto:n13671@cray.com

